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Abstract We study cnitically the pion dispersion relations of Roy and show that they lead in
general to mncorrect threshold behaviour for the higher partial-wave amplitudes We are able
to modify the equations, 1n order to cure this disease, but at the expense of a reduced domain
of convergence The new equations of Mahoux, Roy and Wanders are found to be free from
the difficuity, and we are able to cast them mto a form remiiscent of the Cini—Fubini re-
presentation

1. Introduction

Roy [1] has introduced twice-subtracted, fixed-f pion dispersion relations, in
which the subtraction functions are evaluated by use of st crossing symmetry. If
one expands the absorptive parts i partial waves, and then projects the dispersion
relations onto Legendre polynomuals, one can construe the Roy equations as ex-
pressions for the real parts of the partial-wave amplitudes in terms of their imagimary
parts, and the two S-wave scattering lengths The equations have been so used by
various authors {2—4], who employ unitanty as a constraint, and who make a num-
ber of numerical predictions. In particular, the authors of ref. [3] have found only
a subset of the solutions claimed by those of ref [2].

The most complete numerical work appears to be that of Basdevant et al. [2],
who find that some predictions can be made, although the range of possible solu-
trons of the Roy equations, combined with unitanty, 1s rather large. This conclusion
is to be expected, since the Roy equations are less restrictive than the Mandelstam
equations with full crossing symmetry. and 1t has been demonstrated [5] that there
exists a very large infimty of solutions of the latter equations. Nevertheless, the
numerical extent of the non-uniqueness has not been explored hitherto in a satis-
factory way*, and 1t may be that the Roy equations provide a practical way to do
this in a partial manner

Previous authors, including Roy himself [1—4,7], use Bose symmetry to halve

* See however the preliminary work [6].
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the physical interval, —1 < cos 8 < 1, 1n the partial-wave projection. This procedure
1s acceptable only for an amplitude that has this symmetry, but an approximate or
iterative use of the Roy equations does not guarantee this at intermed:ate steps. and
n fact the threshold behaviour of waves with / 2 3 1s not correctly reproduced in
such an 1teration. Since the higher waves are coupled to the lower ones, this defect
may be expected to affect also the S, P and D waves. It 1s misleading to suggest, as
some authors do, that the S and P waves drop out of the equations 1dentically,

since they are dependent upon the higher absorptive parts through the so-called
driving terms.

One possible remedy 1s to employ the whole projection interval —1 <cosf <1,
although this reduces considerably the domain of validity of the equations A more
attractive alternative hies in the use of the new equations of Mahoux et al. [8], in
which the Wanders symmetric variables [9] guarantee full crossing symmetry for
the amplitudes at each 1terative step, so that use of the halfanterval s justified
Hence no subsidiary conditions are needed to ensure full crossing symmetry, al-
though such conditions are needed for the original Roy equations However, there
1s a supplementary requirement which takes the place of these subsidiary conditions,
namely that the amplitudes be independent of the particular Mahoux—Roy—-Wanders
equation that one uses. (There 1s a whole family of equations parametrized by a
constant, xg, as we shall see in sect 4.)

In this introductory paper we examine some of the properties of the Roy equa-
tions In future work, we hope to establish the existence of fixed points for these
equations, when they are combined with umitarity, and we propose also to investi-
gate the system numerically, 1n particular to check the conclusions of Basdevant et
al. for equations that do not suffer from the threshold disease.

The present paper 1s arranged as follows 1n sect. 2 we display the original Roy
equations as a mapping, both with the half and with the whole interval, and 1n sect
3 we show that the correct threshold behaviour 1s reproduced in the latter, but not
n the former case. In sect 4 we give the new equations of Mahoux et al which we
cast into the form of a Cimi—Fubini representation [10]. We show that the threshold
behaviour of the partral waves 1s correct in this case.

2. Roy equation

Roy evaluated the subtraction function 1n a twice-subtracted, fixed-r dispersion
relation by using s¢ crossing symmetry. The result 1s

F(s, )= 38,0 )a+ f ds'[g5(s, 1, s)A(s',0) + g3(s, 2, s YA, )] 2.1
4

where F and A are respectively the pion amplitude and its s-channel absorptive part,
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both written as three-component column vectors, corresponding to the 1sospin
states/ =0, 1, 2. Here

rao]
a=10 |, (2.2)

[

where a(y and @, are respectively the / = 0 and 7 = 2 S-wave scattering lengths, and

g1(s, ) =s(1- Cy )+ HCs,— Cy) +4Cy, | (2 3a)
, I Chy 2s+1—4 1=Cu/\ 1

g2(s,5,5)=C, ( + = —

2 se\ 2 r-4 2 ) g2

4-1)2C;, 4r+4(4-0C
x[ SRS TR _f)_&] (2.3b)

s'—t s —4+t s —4

2 2 —n2 [ Coutl 4C.—1
g3(s,t,s')=%{ o4, G-y [ sutl 2s+t-4 Csu ]]

A s'—u s 4+t 2 -4 2
(2.3¢)
The 1s0sp1in crossing matrices are
M 0 0] 2 6 10 "2 -6 101
C,u=\0u10}, CS,=é2 3 -5, Csu=é[2 3 5J.(2.4)
LO 0 1 2 -3 1 2 3 1
We may write a partial-wave series for the absorptive part
A(s' 1) =IZ=70 QI+ Imfy (s Py (1+s—,9f2), 2.5)

and this 1s convergent for all s' € [4, o) 1f € (—28,4) Note that our F and A4 differ
from Roy’s by a factor of 4, and that we use the kinematic-singularity-free partial-
wave amphitude, which 1s related to Roy’s g;(s) by

N

16 (525) 4© (26)

Roy’s next step was to project F (s, £), defined by eq (2.1), onto Legendre poly-
nomials He used fu crossing symmetry to reduce the integration range from
—1<z;<1 to 0 <zy < 1, where z; is the s-channel scattering cosine



D Atkinson, TP Pool, Roy equations {I) 508

2t
Zs:1+m (27)

We shall write
1
[ =alim £.L ) E L1+ 1)/C ] [ dzgPiz) FGs. 1z, 5)) (2.8)
0

This expression gives an equation for f;(s), in terms of the Im f;(s"), that 1s valid for
—4 < s <60 Although (2 8)1s1dentically satisfied by a fully crossing-symmetric
pton amplitude, 1t 1s important to realize that, if we combine (2.8) with unitarity,

in order to make a non-linear equation for Im fy(s), a solution 1s not guaranteed to
be crossing symmetric between the three channels. Although su crossing was used
explicitly to write the fixed-# disperston relation, st crossing was employed to
evaluate the subtraction function, and #u crossing was invoked in order to halve the
z, integral range, nevertheless an amplitude constructed from the partial-waves (2.8),
let us call 1t

Fs, 1) = l§(2l+1)PI(zs)a[Imf,l, s, (29)

would only satisfy zu crossing automatically. To ensure full crossing, one would have
to impose st or su symmetry as a subsidiary condition

Fe(s, 1) = Cy, FO(1, 9) (2.10a)
or
F(s,1)=Cg F*(u, 1) (2.10b)

The question as to which crossing conditions are guaranteed by the form of the
equations 1s not merely a technical matter, which we have to render explicit tn order
to apply a fixed-point theorem, 1t 1s also important for a numerical approxumation
scheme. In fact we shall suggest that the amplitude (2.9), based on eq (2.8), 1s un-
satisfactory, 1n that the threshold behaviour of the higher partial waves is not
guaranteed. We shall then be led to consider alternative systems of equations.

Let us first consider the analyticity properties of F(s, t), as defined by eq (2.1)
At first sight 1t looks as if g5(s, 2, s") has a pole at £ = 4, but a closer examination
shows that this 1s not so. The function F(s, ¢) has cuts 4 <5 <o, 4 Ky oo,

4 < r<Coo, as expected, but 1t also has 1n general an unwanted cut —eo < ¢ < 0 that
arises from the denominator s’ — 4 + £ 1n eqgs. (2.3b) and (2.3c). Strictly speaking,
we cannot infer the f-plane analyticity of F outside the domain of convergence of
the series (2.5) for 4 The important point here 1s that in general there would be a
spurious branch-point at £ = 0, which 1s within the range of applicability of (2.5).
The terms involving the denominator s’ — 4 + £ are
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Csu+1 4 Coy—
f [ s d ][CmA(s 0460} § (4 41;’ @ 11)

and so the discontuity across the unwanted cut 1s

i B A G ) (G A6 10 - a1, 212)

Now suppose that the absorptive parts in (2.5) satisfy
Im f{(s)=0 for [+/o0dd, (2.13)

which follows of course from s-channel Bose symmetry This implies
A, y)=Cp, Alx, 4 —x— ), (2 14)

which means that the second factor m (2.12) vanishes, and hence that there is after
all no cut —eo <t <) We shall therefore in future always ensure that 4 satisfies
the Bose condition, whether we are considering a fixed-point theorem or a numerical
calculation

In the next section, we shall show that eq (2.8) is unsatisfactory for the partial-
wave amplitudes, since for / > 3 the threshold behaviour (s — 4)! is not 1n general
produced by the mapping o of (2 8), although we insert the expected behaviour

Imf(s) ~ (-4t (215)
s’ =4+

into eq (2 5). The cause of the trouble 1s the use of the half-range for the partial-
wave projection. If we use the following mapping instead of (2.8)

def 1
f,s)=B(Imf.Ls] =} f dz, Py(zg) F(5, 1z, 5)) (2 16)
1

then the correct threshold behaviour 1s guaranteed for all partial waves, as we also
show 1n sect 3. A disadvantage of the mapping f is that (2.16), with F defined as
in(2.1) and A4 as 1n (2 5), 1s valid only mn the smaller range 0 < s < 32. Indeed,
Roy’s reason for using the half-interval was precisely to extend the validity of the
partial-wave expansion to s = 60. However, 1n view of the threshold difficulties, 1t
must remam doubtful whether this was a good plan.

It 1s clear that, 1f we construct an amplitude, FA(s, £), by means of a partial-
wave series like (2 9), but with § in place of «, then

F8s, 0)=F(, 1), (2.17)

and so this function is automatically su crossing-symmetric, as one can check from
eqs (2.1)—(2.3). However, tu crossing (1.e. Bose symmetry) 1s not automatic, and
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it would have to be imposed as a subsidiary condition
FP(s, )= C,, FP(s, 1) . (2 18)

Notice that, if we impose Bose symmetry on the iput partial-wave absorptive parts
(2 13), then the output absorptive parts also are fu symmetric, since

ImB[Im £,/ s] =1m f,(s) , (2.19)

and so the subsidiary condition 1s an explicit constramnt on the real parts (although
this implies that the imaginary parts are indirectly constrained, since the real part
of F1s defined as a function of the scattering lengths, and the absorptive parts,
through eq (2 1)) It s also true for the mapping (2 8) that

Imaflm £,/ s] =Im fl(s) ; (2 20)

as we shall now show 1f s and ¢ are 1n the s-channel physical regton, we see from
(2 1)and (2 3) that

Im F(s, 1) =A(s, t) (2 21)
Thus (2 20) follows for / +{ even, since

1 &
i
f dx PY(x) Pp(¥) = 57 (2.22)
0

for I + 1 even, and for / + ' odd there 1s no contribution from (2 5), because the
nput absorptive parts satisfy Bose symmetry [eq. (2 13)]. For / +/ odd, (2.2) fol-
lows trvially from the factor 1+ (—1)!C,, m (2.8).

Unfortunately the 8-mapping has an undesirable feature Since the fu crossing
(2 18) 1s not automatic for the dispersive part, an attempt to couple (2.16) with
unitarity to define a mapping Im f;(s) — Im f;(s) would not be suttable for a fixed-
point proof The reason is that one cannot preserve Bose symmetry, even 1f one
constrains the input absorptive parts by (2.13), and so the spurious branch-cut
00 <t <0 of eq (2.11) would not disappear. Thus the partial-wave form of the
Roy equation would be vitiated

The solutton to the above dilemma 1s stmple we need to replace (2.16) by

e 1
£6) =m0 50+ DIC) [ dzgBileg) Fls i(z5). (2.23)
71

which amounts to taking the partial waves (2.16) for / +/1s even, and dropping
those for 7 +7 odd. If we define

F(s, 1) =I_EO(2Z+1)P1(ZS)’)/[Imf,l, i, (2.24)
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then clearly this function has fuz symmetry, but we have in general lost su sym-
metry, just as in the case of the a-mapping. We would then have to impose st or su
crossing symmetry as a subsidiary condition ((2.10a or b), with 7 1n place of a) It
1s easy to see that

F(s, )= L[ FP(s, )+ C,, F(s, u)] (2.25)

The y-mapping (2.23) suffers from the disadvantage that, like the §-mapping, it
1s only valid up to s = 32, but it 1s free from the threshold disease of the a-mapping
and from the Bose malady of the S-mapping. The eqs. (2.23)and (2.1)—(2.5), com-
bined with unitarity, are suitable for an apphication of a fixed-point principle, 1f 1t
1s assumed that Im f;(s) 1s known for s 2 32. At a fixed point, one may think of
constraming the scattering lengths, and whatever model one has used for Im f;(s),

5 2 32, by means of the subsidary condition. Here one has the choice of using the
st or su constraint (2 10) on F7 1tself, or the fu constraint on Fﬁ, for even with the
y-mapping one can calculate F¥= F at a fixed point

It has been remarked that the S- and P-wave absorptive parts cancel out of the
fu subsidiary condition [7] (2.18) (which of course has to be applied to F® = F,
and not to F® or F7) [t s also true that they disappear from the st or su subsidiary
conditions (2 10), as applied to F* or F¥ The cleanest way to see this is to write
the Roy equation (2 1) in the approximation in which only S- and P-waves are
retained for the absorptive part under the integral, ve.

A(s, 6y =1Im fo(s) +3 ( 1+ 2~[4 )Im fi(sh, (2.26)

where Im f(; has no /= 1 component, and Im f; has only an / = 1 component. The
result [8] is

F(s, )=I(t,u)+ C; I(s,u) + Cg, I(2,5) , (2.27)
where
ew=gert 4)fs(s 9 ")
+2 (0w f 4) 5 A= Cu T (2.28)

This has the form of a twice-subtracted Cini—Fubimi approximation [10] to the
Mandelstam representation, and one sees that crossing symmetry between the three
channels 1s exact. In this approximation, there 15 no distinction between F* FP
and F”, and the subsidiary conditions are automatically satisfied. It is only 1f there
are non-vanishing absorptive parts for / 2 2 that the subsidiary conditions are not
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automatic; but since the S- and P-wave contributions enter precisely as in (2.27),
and the subsidiary conditions are Iinear in £, 1t follows that the scattering lengths
and the S- and P-wave contributions cancel out of them. However, we stress agatn
that the S- and P-wave amplitudes are indirectly constraimned by the subsidiary
conditions, since they depend on the absorptive parts of the higher waves

(' >2meq. (2.9)).

3. Threshold behaviour

In this sectton, we shall examine the threshold behaviour of the partial-wave am-
phitudes defined by the three mappings a, § and vy of sect 2. We shall show that the
correct form, namely

TORICEI (3.1)

s — 4+, is reproduced for the $-mapping (and therefore trivially also for the y-map-
ping), but not for the -mapping. We propose first to study the S-mapping in detail,
in order to demonstrate (3.1)

The partial wave of the 3-mapping (2.16) may be divided into the following
pieces (when ntegrated over £)°

Bl £, 51 =810 Jo(s) + 51 4(5) + f ds’ EJK,(s ). (3.2)

The first two terms are respectively contributions to the S and P waves, and ornginate
from the subtraction terms. The S-wave terms are

00

s~42"0’5“2 1 [ 20'+1

J 2

O(S) a9+ 4 115[ I'=0 3s'(s’ _4) (3.3a)
X [2("+5—2) Im fP(s) +3(25' +5- 4) Im fl,l(s) +5(25'—s—-4)Im fl?(s')] ,

oo

_ 4 2ag—5a ~ !
s—4 <%0 2 1 f § Z/‘ 2,1 ’+1
X [2(25'— 5~ 4)Im fIQ(s') —3(2s'+s—4)Im flfl(s')’r(2s'+ 55—-4)Im fl,z(s')],

with the isospin one term 1dentically zero. The P-wave contribution is non-vanishing
only for 1sospin one, and 1t has the form
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-4 20'+1
Jis) = _erth
(S) f l =0 65'(s' —4)
X [91mf)(s) +6Im £,1(s") — 10 Im £,7(s")] (3 3¢)

These terms ensure the expected S- and P-wave threshold behaviours, and they need
not detain us further

The denominator s' — 7 1m (2.3b), and s’ — u 1n (2 3¢) yield, after projection onto
Legendre polynomuals, the expression

"\ - 1+Cy, 1 —Cy, s
4),2(2“”{["sr e (175

2s ,
; 4) CWJ Imf,(s), (3 4)

le(S,S,)z Ql (1 +

+(—1)1Plf (-

which contains the Legendre function of the second kind This immediately gives
the required factor (3.1).

The denominator s’ — s (2 3¢) does not lead to a ¢, function, but the correspond-
ing contribution to the partial-wave amplitude may be written

oo

s6-4) 13 201 g

s)= 1-2a)Im £, (s 35
Tylss)= ool L AT 2 In (6 35)
Here
s—4
o= s 3.6
S (3.6)

and P, ®B |5 the Jacobr polynomial The series 1n (3 5) starts at the pownt I' =1, be-
cause the contributions from the waves /<[ 1n (2.5) are orthogonal to
Py(1+2t/(s — 4)), over the whole interval 4 — s < ¢ < 0, this 1s the source of the
factor af 1n (3.5), which guarantees the threshold (3.1). It may be noted at this
point that the orthogonality 1s no longer valid in the case of the a-mapping, where
only the half-interval 1s used 1n the partial-wave projection. It is also true 1n this
case that the J, term no longer gives a Legendre function of the second kind, as 1n
(3.4), and this also gives an incorrect threshold behaviour. After some tedious cal-
culations, one may show mn fact that the a~mapping yields the threshold (s — 4)?
for I 2 2, and hence that the threshold 1s defimtely wrong for /2 3

Finally, the remaming terms 1 (2.3b) and (2.3c¢), which contain the denominator
s — 4 + 1, give the contribution
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!

o0 !
I s)= 2 @1y 2o L gmpdmiiig g

I=1+1 m=1+1 L+ m+1 G7)
X Al,m (_1 “Szjs;‘-_) Csu *Al,m (1 *%) [Csu LS_"'S +S£,:”lmfl,(s’) ,
where
AL (@)= Q@) P (2) — Pi(2) O (2) (3.8)

which 1s a polynomaial, the degree beingm —7—1 for m =/ +1 Thus the factor o,
together with the terms involving 4, ,,, result in the expected behaviour (3.1).

4 Mahoux—Roy-—Wanders equation

In this section, we shall first outline the method of Mahoux et al. [8], and we
shall cast their new equation 1nto an elegant form In the first place, one uses the
Roskies amplitudes [11]

Gols, 1) = +{F (s, 1) +Fy(t, u)+ Folu,s)},

Fl(S, [)
Gi(s, )= pa— + (stu —~ tus) + (stu —> ust) ,
Fi(s, 1) Fy(t,5)
GHs, t)'—‘[ ;7 ” ‘*slf:uv S—i—[+(stu->tus)+(stu—>ust) @410

We shall write G (s, t) for the three-component vector consisting of G, Gy and G,.
We express G 1n terms of the symmetric Wanders variables [9}]

X = — (st +tu+us), (4.2)
y =L, 43)

and we write a dispersion relation for G(x, y) on the straight line y = a(x — x(). As
shown 1n ref. [8], one may re-express this dispersion relation in terms of the
variables s, £ and u as follows

G(s, 1)=G(sy, t;) +% f ds' AG(s, ) (s~ ') (2s'+1' - 4)
4

x{, R L J (4.4)
CCHE-NE -0 G s -6 —uy)
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where (s, ) and (54, 1) are two pomts that map onto the line y = a{x — xg), which
means that
stu Sylyuy

=— - ——— —— =4y 45
st +tutus+16xy syt uptugs)t 16xg (45)

In (4 4), (¢, ') naturally maps also onto the aforementioned line, from which one
deduces that

l'(s',a,x0)=%[44s'+[(s'4)2\ 16a (4 6)

s'(s' —4) — 16x0jl L
s'+4a ’
and AG(s', ') 1s the discontinuity of G(s', t') across the cut 4 <s' < oo, divided by
21
Eq (4.4) 1s the basic equation given in ref. [8]. It is possible, by going through
some algebraic torture, to express (4.4) 1n the following form, which 1s very re-

mimiscent of the Cini—Fubini representation [10]-

_ Lds e o
G(s. t)—G(s],t1)+7r4f 386600

+ +r ] T - (47)
§—8§5 §—1 §s—u S*Sl S*tl S*lll

One sees that G 1s manifestly crossing symmetric Also, since
1'(s,a,x¢g)=1 or u, (4.8)

depending on which sign of the square root n (4.6) we choose, 1t follows that the
discontinuities on all three cuts 4 <s < oo, 4 < <oo, 4 <y < oo, are reproduced
correctly by (4.7) The ambiguity (4.8) does not occur in the definition of
AG(s' 1), because 1f F(s, 1) 1s Bose symmetric, then

AG(, 1Y =AG(s' 4 -5~ 1), (49)

and so AG(s, ') 1s even as a function of
, ' S —4)—16xy |4
r=te2 sl 16g— — 0 (4 10)
s'—4 (s'—4)2 (s +4a)

at fixed s". Hence the surd disappears

[t 15 convenient to choose the subtraction point

,_ def
SI=2[1+(]+4XO)7] = 80, 11=0, (411)

so that (4 7) becomes
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1 [ ds '
= = | = t
GGs, 1) G(s0,0)+ﬂ4f 3 8660
2 2
2 2 2 s (4-59)
X{ ’S + I[ + Iu - rO T 0 : (412)
s -5 s—t s-u s-s55 s—4+59

We have lost no generality here, in the sense that (4.7) may be trivially recovered
fiom (4.12) Hence we shall be content to work with the latter equation.

We may remove G (sg, 0) n favour of G(4,0), which 1s related to the scattering
lengths, by rewriting (4 12) for the special case @ =0,5=4,7=0=¢" The result 1s

s (4-s)?

4 s'—5y s'—4d+s

G(50,0) = G(4, O)~~fd—sAG( 0){ } (4 13)

which may then be substituted into (4.12). We have thus an equation for G(s, t), m
terms of the subtraction constants, G(4, 0), and the discontinuities, AG(s', 1),
AG(s,0), and depending upon a parameter ¢ It 1s important to notice that if AG
satisfies the Bose symmetry (4.9), then (4.12) defines G as a function with full stu
crossing symmetry. However, 1t must be stressed that the representation (4.12) 1s
not valid for all values of s, # and u [8].

It appears at first sight as 1f there are three subtraction constants, G (4, 0),
G1(4,0) and G,(4,0), but 1n fact G, satisfies an unsubtracted relation, so that

G,4.0=L [ ds’AGQ(s’,m[ ILZHH @14)
; -

One has therefore just two independent subtraction constants, as in sect. 2 and these
may be related to the S-wave scattering lengths as follows

ag=35G(4,0)+ 5 G1(4,0) - 5G,(4,0),
a3 =5Go(4,0) — §G1(4,0) + $5G,(4,0) (415)

It 1s to be remarked that the S- and P-wave contributions to the system (4 12},
(4.13), (4.14) and (4 15), just give back the Cini—Fubini approximation (2.28) to
the “Cini—Fubint representation” (4.12).

We may set up a mapping like those of sect. 2, in which we first define 4 1n terms
of the partial-wave absorptive parts, eq. (2 5). Then AG is defined by means of the
imaginary parts of eqs (4.1), which we may re-express, by using crossing symmetry,
in the form [8]
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AGy(s, 1)=5[A4g(s, ) +245(s, 0] ,

AGl(s,t)—6(S3SZ)(S4 5124005, = 54, t)]+[ - o ft)(s )] (6.0
1 —
AGH (1) =~ 55 (24006 0~ 5 Ao, )] + 2“(?—-”%51'%;3—) Ay(s,1).

(4 16)

It is important to notice that 1f Im f; vanishes for / +/ odd, then A4 satisfies Bose
symmetry, L.e.

Af(s, )= (1) 4,0, 1), 417

and so AG (s, t), defined by (4 16), 1s automatically symmetrical under the inter-
change ¢ < u. Hence G may be defined by eqs. (4 12) and (4 13), without any am-
biguity, and it will be fully stu symmetrical, as we have seen.

We can calculate F from G by the formulae

Fo(s, 0)=3G(s, ) +2(3s—4) G (5, 1) — 5352 +61u — 16)G, (5, 1),
Fi(s, ) =50 - u)[3G (s, ) +(3s —4)Gy(s, 1)] ,

Fy(s,1)=3Go(s, 1) — 5(35—4)G (5, ) + %352 +61u— 16)G5(s, 1) . (4 18)

The fact that G 1s fully symmetrical implies that F has the correct stu crossing
symmetry. We may project out partial waves, using the half-interval, because Bose
symmetry 1s automatic. Let us summarize the above equations as the mapping

£,6)=80mf.Ls] = 11+ (-1)/Cy,] f dz, Pz (s, 1(z,, ) (4.19)

It 1s shown 1n ref. [8] that this representation is valid for any physical s up to 90.20,
if we take the parameter x5 = 0. This 1s therefore a considerable improvement on
the 60 of the a-mapping 1n sect. 2 Indeed, since we could not actually use the
a-mapping, in view of the threshold problem, we should really compare 90 20 with
32, the maximum s-value that can be used with the y-mapping. It 1s possible to ex-
tend the validity of the 8-mapping of (4.19) even further by using also x = 50.41.
In this case the equation does not hold for s below 39.78, but 1t can be used up to
125.31. It should be remarked at this point that we cannot regard @ and x( as indepen-
dent parameters For a given x(j and s, we choose to regard @ as a function of ¢,
through eq. (4.5). In this way we can cover the required integration interval 1n
(4.19).

It 1s tmportant to check that the threshold behaviour of f;(s), as defined by (4 19),
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1s correct. We may immediately replace (4 '9) by
1
fis)=4% f dz Pz )F(s, 1(z %)) . (4 20)
-1

because ¢ — u crossing 1s automatic. We substitute the expressions (4 18) into the
above, and use the MRW equation 1n the formh (4 12). We may now expand
AG(s', t') in the partial wave sertes

AG(s, 1)Y= 22 QI +1)AGH(s) P (2, (421)
I'=0
with only even values of /', and where z" was defined in (4.10). We separate the
Cauchy denomnators s’ — 7 and s" — « from the powers of r and u, so that we have
to consider the trivial polynomial terms that contribute only to the S and P waves,
and then the more complicated terms,

1

desPl(zs)Pl'(Z/)” (4 22a)
-1

5 1
Py fl dz Pz ) Pp(z) (' 2z )1 (4.22b)

We write Py(z") explicitly as a polynomual i z', involving only even powers, and
note that

4[s'(s ~ 4) — 16x] s(s — 4)2(1—z2)
+ T (423)
(5" = 4)2{(s'~ ) (1= 22) (s —4)2 — 45[s(s —4) — 16x ]}

'
22

It 1s not difficult to see, by means of an expansion in powers of (s —4) (12 z,), that
the expressions (4 22a) and (4.22b) give precisely the threshold behaviour (s — 4)!
(since zJ! 1s orthogonal to P;(zy) on the whole interval, if n <7).

We can with advantage use the 6-mapping, combined with unitarty, to define
amapping Im f; = Im f;. In this case, 1t will be necessary to supply a model for
Im f;(s), s 2 125 31, and some model for the elasticity, 1;(s), 16 <s << 12531, as
well as values for the scattenng lengths One no longer has a crossing-symmetry
subsidiary constraint upon the input quantities, since F(s, ¢) 1s fully crossing sym-
metric, but in general one has to exclude unwanted singularities that anse from the
denominator s’ + 4a 1n (4 10) A necessary constraint 1s that the fixed point should
be independent of x;. Hence one could think of using the mapping at many dif-
ferent values of x between 0 and 50 41, and one could then vary the mnput quanti-
ties Im f;(s) (for large s), and n;(s), and also the subtraction constants, in such a way
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as to minimize the x; dependence of the fixed point. In a subsequent paper we
propose to investigate the resulting subsidiary conditions 1n detail.

We have pleasure 1n thanking G. Auberson, J L. Basdevant, K Dietz, G. Mahoux,
J L. Petersen and G. Wanders for helpful discussions.

One of the authors (T.P. Pool) has carried out his work as a scientific staff mem-
ber of the Stichting F.O.M. (Foundation for Fundamental Research on Matter),
which 1s financially supported by the Z.W.O. (Netherlands Organisation for Pure
Scientific Research).

After this work was completed, the paper of Auberson and Khuri [12] was
brought to our notice. In the “note added 1 proof” at the end of that paper, 1t was
shown that the new equations reduce to a Cini—Fubini form 1if the amplitude is
completely symmetric. [t may be shown 1n fact that this form 1s precisely equivalent
to our Cin1—Fubini representation, for the special case xy = —(a +§)/3a. Hence the
Mahoux—Roy—Wanders equation (for the special case x5 = —(a +3)/3a) 1s the same
as the Auberson—Khuri equation (for the special case that the amplitude 1s stw sym-
metric). We thank Dr J.S Frederiksen for very helpful discussions of this point.
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