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Abstract We study critically the plon dispersion relations of Roy and show that they lead m 
general to incorrect threshold behavlour for the higher partial-wave amphtudes We are able 
to modify the equations, in order to cure tins disease, but at the expense of a reduced domain 
of convergence The new equations of Mahoux, Roy and Wanders are found to be free from 
the difficulty, and we are able to cast them into a form remlmscent of the Clnl-Fubinl re- 
presentation 

1. Introduction 

Roy [1] has introduced twine-subtracted, flxed-t plon dispersion relations, In 
which the subtrachon functions are evaluated by use of st crossing symmetry. If 
one expands the absorptive parts m partial waves, and then projects the dispersion 

relations onto Legendre polynomials, one can construe the Roy equations as ex- 
pressions for the real parts of the partial-wave amplitudes in terms of their imaginary 

parts, and the two S-wave scattering lengths The equations have been so used by 
various authors [ 2 - 4 ] ,  who employ unitarIty as a constraint, and who make a num- 
ber of numeracal predictions. In particular, the authors of ref. [3] have found only 
a subset of the solutions claimed by those of ref [2]. 

The most complete numerical work appears to be that of Basdevant et al. [21, 
who find that some predictions can be made, although the range of possible solu- 
tions of the Roy equations, combined with unitarlty, is rather large. This conclusion 
is to be expected, since the Roy equations are less restrmtlve than the Mandelstam 
equations wath full crossing symmetry, and It has been demonstrated [5] that there 
exists a very large mfimty of solutions of the latter equations. Nevertheless, the 
numerical extent of the non-uniqueness has not been explored hitherto In a satis- 
factory way*, and it may be that the Roy equations provide a practical way to do 
this in a partial manner 

Previous authors, including Roy himself [1-4,71,  use Bose syrametry to halve 

* See however the prehmmary work [6]. 
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the physical interval, - 1  ~< cos 0 ~< 1, in the partial-wave projection. This procedure 
is acceptable only for an amphtude that has this symmetry,  but an approximate or 
lteratlve use of the Roy equations does not guarantee this at intermediate steps, and 
in fact the threshold behavaour of  waves with l ~> 3 is not correctly reproduced in 
such an Iteration. Since the higher waves are coupled to the lower ones, this defect 
may be expected to affect also the S, P and D waves. It is misleading to suggest, as 
some authors do, that the S and P waves drop out of  the equations Identically, 
since they are dependent upon the higher absorptive parts through the so-called 
driving terms. 

One possible remedy is to employ the whole projection interval - 1  ~< cos 0 ~< 1, 
although this reduces conslderably the domain of  vahdlty of the equations A more 
attractwe alternative lies In the use of the new equations of Mahoux et al. [8], in 
whxch the Wanders sylnmetrlc variables [9] guarantee full crossing symmetry for 
the amphtudes at each lteratwe step, so that use of  the half-interval is justified 
Hence no subsadmry conditions are needed to ensure full crossing symmetry,  al- 
though such conditions are needed for the original Roy equations However, there 
IS a supplementary requirement which takes the place of these subsidiary conditions, 
namely that the amphtudes be independent of the particular M a h o u x - R o y - W a n d e r s  
equation that one uses. (There is a whole famdy of  equations parametnzed by a 
constant, x 0, as we shall see in sect 4.) 

In this Introductory paper we examine some of  the properties of the Roy equa- 
tions In future work, we hope to estabhsh the existence of  fixed points for these 
equations, when they are combined with unltari ty,  and we propose also to investi- 
gate the system numerically, in particular to check the conclusions of  Basdevant et 
al. for equations that do not suffer from the threshold disease. 

The present paper as arranged as follows in sect. 2 we display the original Roy 
equations as a mapping, both with the half and with the whole interval, and m sect 
3 we show that the correct threshold behaviour is reproduced in the latter, but not 
m the former case. In sect 4 we give the new equations of Mahoux et al which we 
cast into the form of  a C ln l -Fub ln i  representation [ 10]. We show that the threshold 
behavIour of  the partial waves is correct m this case. 

2. Roy equation 

Roy evaluated the subtraction function in a twice-subtracted, fixed-t dispersion 
relation by using st crossing symmetry. The result is 

F(s, t)=lgl(s , t)a+ f ds'[g2(s,t,s')A(s',O)+g3(s,t,s')A(s',t)], (2.1) 
4 

where F and A are respectwely the plon amphtude and its s-channel absorptwe part, 
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both written as three-component column vectors, corresponding to the lsospln 
states I = 0, 1,2. Here 

?°1 
a = 0 } ,  (2.2)  

/ 

~a2 
where a 0 and a 2 are respectwely the I = 0 and 1 = 2 S-wave scattering lengths, and 

gl(s , t )=s( l  Csu)+t(Cst Csu)+4Cxu, (23a) 

( l + C t u  2s+t 4 l - C t u )  1 
g2(s, t, S') = Cst ~ + t - 4  2 7rs'2 

[ ,2 +(4 
X s' t s' 4 +t 

g3(s,t,S')= 1-~7-t ,S2 +Csu 
7rs2 ~ s - s  

4t+4(?-t)Csu_~ 
s - 4  J ,  (2.3b) 

U 2 ! 4 - 0  2 F Csu +1 2 s + t - 4  Csu-l-~ I 
s ' - u  sT-4~ t [ -  ~ +  t 4 2 "d ] 

(2.3c) 

The IsospIn crossing matrices are 

7-1 0 0 ~  1 [-2 6 110 l 
Ctu= I 0 -1 0 , (;st =~ 2 3 -5  , 

~0 0 ~_t L2-3 

~ 2  - 6  10~ 
1 

C s u = 6 ~ 2 2  33 5 i ( 2 4 ) 1  

We may write a partial-wave series for the absorptive part 

(1+ 2' ) , ,  , -  , -  4  2s, 

and this is convergent for all s' C [4, ~) if t E ( -  28, 4) Note that our F and A differ 
from Roy's by a factor of 4, and that we use the kmematm-slngulanty-free partial- 
wave amphtude, which is related to Roy's al(s ) by 

~__~ al(s) (2.6) 

Roy's next step was to project F(s, t), defined by eq (2.1), onto Legendre poly- 
nomials He used tu crossing symmetry to reduce the Integration range from 
-1 <~ z s ~< 1 to 0 ~< z s ~< 1, where z s is the s-channel scattering cosine 
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2 t  
z s = 1 + (2 7) 

s - 4  

We shall write 

1 

fl(S) = o~[lm f ,  l, s]det= ~i [1 + ( -  1) lc tu]  f dZsPl(Zs)F(s' t(zs' s)) 
0 

(2.8) 

This expression gxves an equation for f/(s), m terms of  the hn fl,(S'), that is valid for 
- 4  ~< s ~< 60 Although (2 8) is identically satisfied by a fully crossing-symmetric 
plon amplitude, it is Important  to realize that, if we combine (2.8) with umtanty ,  
m order to make a non-hnear equahon for lm fl,(S'), a solution is not guaranteed to 
be crossing symmemc between the three channels. Although su crossing was used 
explicitly to write the fixed-t dispersion relatmn, st crossing was employed to 
evaluate the subtraction function, and tu crossing was invoked In order to halve the 
z s Integral range, nevertheless an amplitude constructed from the partml-waves (2.8), 
let us call it 

F~(s, t) = ~ ( 2 1 + l  )Pl(Zs)Ct[Im f , l, s I , (2 9) 
l=O 

would only satisfy tu crossing automatically. To ensure full crossing, one would have 
to impose st or su symmetry as a subsMaary condition 

F~(s, t) = Cst F~(t ,  s) (2.10a) 

o r  

Fa(s, t) = Csu F ~ ( . ,  t) (2.10b) 

The question as to which crossing condlhons are guaranteed by the form of the 
equations is not merely a technical matter,  which we have to render exphclt m order 
to apply a fixed-point theorem, it is also Important  for a numerical approximation 
scheme. In fact we shall suggest that the amplitude (2.9), based on eq (2.8), is un- 
satisfactory, in that the threshold behavlour of the higher partial waves Is not 
guaranteed. We shall then be led to consider alternative systems of  equations. 

Let us first consider the analyticlty properties o fF ( s ,  t), as defined by eq (2.1) 
At first sight it looks as if  g2(s, t, s') has a pole at t = 4, but a closer examination 
shows that this is not so. The function F(s, t) has cuts 4 ~< s < 0% 4 ~< u < o~, 
4 ~< t < 0% as expected,  but it also has in general an unwanted cut _oo < t ~< 0 that 
arises from the denominator  s' 4 + t m eqs. (2.3b) and (2.3c). Strictly speaking, 
we cannot Infer the t-plane analytlclty o f F  outside the domain of  convergence of  
the series (2.5) for A The Important  point here is that in general there would be a 
spurious branch-point at t = 0, which is within the range of  applicability of  (2.5). 
The terms Involving the denominator  s' 4 + t are 
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~ I ~ _ ~  1 2 s + t - 4 C s u  1 1 1 ( ds' + [ctua(s' ,O ) -A(s',  t)] (4~-t)2 (2 i i )  
~z J "2 t - - 4  2 s - 4 + t '  

4 

and so the dlscontlnmty across the unwanted cut is 

[ 2 s + t - 4 ( C  )] 
i Csu+l+ / 7 4 -  - su--1 [ C t u A ( 4 - t , O ) - A ( 4 - t , t ) ] .  (2.12) 

Now suppose that the absorpnve parts in (2.5) satisfy 

Imf / ( s )  = 0 for I + / o d d ,  (2.13) 

which follows of course from s-channel Bose symmetry This implies 

A(x,y') = Ctu A(x, 4 - x - y ) ,  (2 14) 

which means that the second factor m (2.12) vamshes, and hence that there is after 
all no cut -oo  < t ~< 0 We shall therefore in future always ensure that A satisfies 
the Bose condmon,  whether we are considering a fixed-point theorem or a numerical 
calculation 

In the next section, we shall show that eq (2.8) is unsatisfactory for the partial- 
wave amphtudes, since for l ~> 3 the threshold behavlour (s - 4) I is not in general 
produced by the mapping c~ of  (2 8), although we insert the expected behaviour 

1 

lm4,(S')s,  4 + (s' 4) 2l'+~3, (2 15) 

into eq (2 5). The cause of the trouble is the use of  the half-range for the partial- 
wave projection. If we use the following mapping instead of (2.8) 

def 1 
4(s)  = 3[ Imf ,  l, s] = ½ f dZsPl(Zs)F(s, t(z s, s)), (2 16) 

-1 

then the correct threshold behavlour IS guaranteed for all partial waves, as we also 
show in sect 3. A disadvantage of the mapping 13 is that (2.16), with F defined as 
in (2.1) and A as in (2 5), is valid only in the smaller range 0 ~< s ~< 32. Indeed, 
Roy's  reason for using the half-interval was precisely to extend the vahdlty of  the 
partial-wave expansion to s = 60. However, in view of  the threshold difficulties, it 
must remain doubtful whether this was a good plan. 

It is clear that, if we construct an amplitude, F¢(s, t), by means of a partial- 
wave series like (2 9), but with/3 in place of a, then 

FS(s, t) = F(s, t) , (2.17) 

and so this function is automatically su crosslng-symmemc, as one can check from 
eqs (2.1)-(2.3),  However, tu crossing (1.e. Bose symmetry) IS not automatic, and 
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it would have to be imposed as a subsl&ary condition 

Fa(s, t) = CtuF~(s, u) . (2 18) 

Nonce that, if we mlpose Bose symmetry on the input partial-wave absorptive parts 
(2 13), then the output absorptwe parts also are tu symmemc, since 

Im/J [ Im/ , l ,  s] = lmf l (S) ,  (2.19) 

and so the subsmdlary condmon is an exphclt constraint on the real parts {although 
this lmphes that the imaginary parts are indirectly constrained, since the real part 
o f f  is defined as a function of  the scattering lengths, and the absorptive parts, 
through eq (2 1)) It is also true fi~r the mapping (2 8) that 

Im ~[lm f , l ,  s] = hn f l(S),  (2 20) 

as we shall now show lfs and t are m the s-channel physical reglon, we see from 
(2 l) and (2 3) that 

hn F(s, t) =A(s, t) (2 21) 

Thus (2 20) follows for I + l even, since 

! 6ll, (2.22) 
dx  & ( x ) & , ( x )  - 2l  + 1' 

o 

for l + l' even, and for I + l' odd there is no contrxbutlon from (2 5), because the 
input absorptive parts satisfy Bose symmetry [eq. (2 13)]. For I + l odd, (2.2) fol- 
lows trlwally from the factor 1 + ( l)lCtu m (2.8). 

Unfortunately the 13-mapping has an undesirable feature Since the tu crossing 
(2 18) is not automatic for the dispersive part, an attempt to couple (2.16) with 
umtarlty to define a mapping lm f/(s) -+ lmfl(S ) would not be suitable for a fixed- 
point proof The reason ~s that one cannot preserve Bose symmetry, even ff one 
constrains the input absorptive parts by (2.13), and so the spurmus branch-cut 
- ~  < t ~< 0 of eq (2. l 1) would not disappear. Thus the partxal-wave form of the 
Roy equatmn would be v~tmted 

The solutmn to the above &lemma is simple we need to replace (2.16) by 

det 1 
f l ( S ) = y [ I m f ,  l,s] = ¼ ( 1 + ( 1 ) l C t u )  f dZsPl(zs)r(s,t(Zs, S)) , (2.23) 

---1 

which amounts to taking the partml waves (2.16) for I + l is even, and dropping 
those for I + 1 odd. If  we define 

FT(s, t) = ~ (21+l)Pl(Zs)Y[Imf,1,  s] , 
/=0 

(2.24) 
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then clearly this functmn has tu symmetry, but we have in general lost su sym- 
metry, just as m the case of the a-mapping. We would then have to impose st or su 
crossing symmetry as a subsidLary condition ((2.10a or b), wxth 3' m place of  a) It 
is easy to see that 

FV(s, t) -- ½ [ F~(s, t) + CtuF~(s, u)] (2.25) 

The 3'-mapping (2.23) suffers from the dxsadvantage that, like the 3-mapping, it 
is only valid up to s = 32, but it as free from the threshold disease of the a-mapping 
and from the Bose malady of  the 3-mapping. The eqs. (2.23) and (2.1)-(2.5) ,  com- 
bined with unitanty, are suitable for an apphcatlon of  a fixed-point prmc@e, if it 
is assumed that Im [l(s) is known for s ~> 32. At a fixed point, one may think of  
constraining the scattering lengths, and whatever model one has used for Im f/(s), 
s ~> 32, by means of the subsidiary condmon. Here one has the choice of using the 
st or su constraint (2 10) on F v itself, or the tu constraant on F tJ, for even with the 
~,-mappmg one can calculate F ~-= F at a fixed point 

It has been remarked that the S- and P-wave absorptive parts cancel out of the 
tu subsidiary condition [7] (2.18) (which of course has to be applied to F ~ = F, 
and not to F ~ or F v) It ~s also true that they disappear from the st or su subsidiary 
conditions (2 10), as apphed to F ~ o f F  v The cleanest way to see this is to write 
the Roy equation (2 1) in the approximation m whach only S- and P-waves are 
retained for the absorptive part under the integral, Le. 

+( A ( s , t )  = I m f 0 ( s )  3 1 + I m f l ( s '  ) (2.26) 
s - 4 /  

where Im [0 has no I = 1 component, and Im f l  has only an I -- 1 component. The 
result [8] is 

F(s, t) = l ( t ,  u) + Cst I(s, u) + Csu I( t ,  s) , (2.27) 

where 

s s(s 4) ? ds' lmf0(s ' )  
I(t ,  u) = ~ a + ~ 4 s'(s' - 4) ( s ' -  s) 

3 s ' t  u) ? ds' i m f l ( S , ) = C t u i ( U , t  ) 
+ - ~ (  - 4 s ' ( s ' - 4 ) ( s ' -  s) 

(2.28) 

This has the form of a twice-subtracted Cml-Fubml  approximation [ 10] to the 
Mandelstam representation, and one sees that crossing symmetry between the three 
channels is exact. In this approximation, there is no distraction between F ~, F t3 
and F "y, and the subsidiary conditions are automatically satisfied. It is only if there 
are non-vamshmg absorptive parts for l ~> 2 that the subsidiary conditions are not 
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automatic; but since the S- and P-wave contributions enter precisely as in (2.27), 
and the subsi&ary con&tlons are linear m F, it follows that the scattering lengths 
and the S- and P-wave contrabutlons cancel out of them. However, we stress again 
that the S- and P-wave amphtudes are Indirectly constrained by the subsl&ary 
con&t~ons, since they depend on the absorptave parts of the hagher waves 
(l'~> 2 m eq. (2.5)). 

3. Threshold behaviour 

In thls section, we shall examine the threshold behavxour of the partial-wave am- 
phtudes defined by the three mappings a,/3 and 7 of sect 2. We shall show that the 
correct form, namely 

h(s) ~ (s - 4) 1 , (3.1) 

s ~ 4+, is reproduced for the/3-mapping (and therefore trivially also for the 7-map- 
ping), but not for the a-mapping. We propose first to study the 3-mapping m detail, 
in order to demonstrate (3. I) 

The par,taal wave of the/3-mapping (2.16) may be &vided into the following 
pieces (when integrated over t)" 

4 
+ 2 1  o o  

/3[lmLl, s] =6lOJo(s)+SllJl(S) s -4 -Y  f ds' ?2J,:z(s,s'). (3.2)  
4 

The first two terms are respectively contributions to the S and P waves, and originate 
from the subtraction terms. The S-wave terms are 

jO(s)=ao4s-aZao-5a2 1 S d  s, ~ 2/'+1 
4 3 rr I '=03 s ' ( s ' -  4) (3.3a) 

X [2(s'+s 2) ImYlO(S')+B(2s'+s- 4) Imfll,(s)+5(2s' s -  4) Imfl2,(s')], 

j2(s)=a2 s - 4 2 a o - S a 2  1 f ~ 2/'+1 
4 6 ~ ds' l ' = 0 6 s ~ - -  4) 

4 (3.3b) 

× [2 (2s ' -  s - 4) Im flO(s ') - 3(2s'+s - 4) Im fl!(S ') + (2s'+ 5s - 4) Im fl}(s')], 

wath the isospln one term ldent~cally zero. The P-wave contribution is non-vamshmg 
only for asospm one, and it has the form 
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s- f J 
( 2 a o -  5a2) - 6 7 -  4 l'= 6 s ' ( s ' -  4) 

X [9 ImflO,(s'3 + 6 lmfl l (s  ') - l0  Im f),2(s')] (3 3c) 

These terms ensure the expected S- and P-wave threshold behavlours, and they need 
not detain us further 

The denominator s' - t an (2.3b), and s' - u an (2 3c) yield, after projection onto 
Legendre polynomials,  the expression 

J21(s,s')=QI l + s - - ~ )  ~ ( 2 l ' + 1 )  Cst +Cst 
l'=0 2 - - 2  s ' -  4 

( +(-1 ) lP l  , -1  s, 4 ] C m  Imf l , (S ' ) ,  ( 3 4 )  

which contains the Legendre function of the second kind This ammedlately gives 
the required factor (3.1). 

The denominator s ' -  s ( 2 3 c )  does not lead to a Ql function, but the correspond- 
mg contr ibut ion to the partial-wave amplitude may be written 

s ( s - 4 )  o~l ~ / 2/ '+1 p ~ , ~ , _ l ( l _ 2 ~ ) l m f l , ( S ,  ) ( 3 5 )  
J 3 i ( s ,  s ' )  - 2s'(s ' -  s) ! ~ 

Here 

s - 4  
c~ = , (3.6) 

s ' -  4 

and P[ '~  is the Jacobl polynomial  The series m (3 5) starts at the point l' = l, be- 
cause the contributions from the waves l ' <  l in (2.5) are orthogonal to 
PI(1 + 2t/(s - 4)), over the whole interval 4 - s ~< t ~< 0, this is the source of the 
factor c~ l m (3.5), which guarantees the threshold (3.1). It may be noted at this 
point that the orthogonalaty is no longer valid in the case of the a-mapping, where 
only the half-interval is used m the partial-wave projection. It is also true in this 
case that the J2 term no longer gives a Legendre function of the second kind, as in 
(3.4), and this also gives an incorrect threshold behaviour. After some tedious cal- 
culations, one may show in fact that the c~-mapplng yields the threshold (s -- 4) 2 
for l >/- 2, and hence that the threshold is definitely wrong for l >~ 3 

Finally, the remaining terms in (2.3b) and (2.3c), which contain the denominator 
s' - 4 + t, give the contr ibution 
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1'=/+] 

where 

& , r e ( z )  = Ql(z)  P,n(Z) - f l (Z )Q , . ( z )  , 

l '  

m~/  2m + I am p2m+l,  1(1 _ 2a)  
(2 l '+1)  l' f m 

= +1 +rrt + 1 
(3 7) 

1 -  L SU~s  - 2 

(3.8) 

which is a polynomial,  the degree being m - l 1 for rn ~> l + 1 Thus the factor a m, 
together with the terms involving A l, m, result in the expected behavlour (3.1). 

4 Mahoux-Roy-Wanders equation 

In this section, we shall first outline the method of Mahoux et al. [8], and we 
shall cast their new equation into an elegant form In the first place, one uses the 
Roskles amplitudes [ 11 ]" 

Go(s, t) = l{F0(s,  t) + Fo(t,  u)  + Fo(u, s)}, 

F t (s, t) 
+ (stu -+ tus) + (stu -+ ust) Ga(s , t )  = t - u  

~2(s, t) = [ Ft(,, t) F~(t, , ) ]  1 + (~t. ~ t.s) + (st. ~ . s t )  (4 1) 
/ - Y  ~-- G j s--L-/ 

We shall write G(s, t) for the three-component vector consisting of G 0, G 1 and G 2. 
We express G m terms of  the symmetric Wanders variables [9] 

x = - ~ ( s t  + tu +us) ,  (4.2) 

y = ~ s t u ,  (4 3) 

and we write a dispersion relation for G ( x , y )  on the straight h n e y  = a ( x -  Xo). As 
shown in ref. [8], one may re-express this dispersion relation in terms of the 
variables s, t and u as follows 

a(s,t)=a(Sl, q)+l f ds'/Xa(s',t')(s ' t ) ( 2 s '  '+ t - 4 ) '  
7T 4 

1 1 ] (4.4) 
X (s' s ) ( s '~ - t ) ( s  ' u ) -  ( s ' - s l ) ( S ' - t l ) ( S ' - - U l )  ' 
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where (s, t) and (s 1, t l)  are two points that map onto the h n e y  = a(x  x0), which 
means that 

stu S l t l U l  
- 4 a  ( 4  5 )  

s t + t u + u s + 1 6 x  0 S l t l + t l U l + U l S l + 1 6 X o  

In (4 4), (s', t ') naturally maps also onto the aforementioned hne, from which one 
deduces that 

/ I s ' ' 1 --S' 4) 2 -  168 s '+4a  -] ' t (s,  a, x0 )  = ~ 4 + (s' '(s' 

and AG(s', t ')  is the discontinuity of G(s', t ') across the cut 4 ~< s' < 0% divided by 
21 

Eq (4.4) is the basic equation given in ref. [8]. It is possible, by going through 
some algebraic torture, to express (4.4) in the following form, which is very re- 
miniscent of the Cinl-Fubml representation [ 10]" 

! ds' 
a(s,  t) = a(s  1, t l )  + J LxG(s', t') 

;7 4 8'2 

{ s 2 t2 u 2 s~ t 2 4 /  (47 )  
X , + , + , , S' S s s t s - -u  s --s  1 t 1 s - -U l )  

One sees that G is manifestly crossing symmemc Also, since 

t'(s, a, Xo) = t or u ,  (4.8) 

depending on which sign of the square root In (4.6) we choose, It follows that the 
discontinuities on all three cuts 4 ~< s < 0% 4 ~< t < 0% 4 ~< u < 0% are reproduced 
correctly by (4.7) The ambiguity (4.8) does not occur in the definition of 
&G(s', t'), because l fF ( s ,  t) is Bose symmetric, then 

aC,(s', t') = aC,(s', 4 - s ' -  t') , (4 9) 

and so AG(s' ,  t ') Is even as a funcUon of  

{ s'(s' 4)~, 16x0 }" 
, 2 t '  = 1 - 1 6 a  , ( 4  10) 

z = l + s , - 4  ~ ~-4)2-(~ ~-~a) 

at fixed s'. Hence the surd disappears 
It is convenient to choose the subtraction point 

j def 
s 1 = 2 1 1 + ( 1 + 4 x 0 ) ~ ]  = s O , t 1 = 0 ,  (4 11) 

so that (4 7) becomes 
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c,(s, t) = a(so, O) + ! ~;j ds-- ~a(s', t') 
4 S'2 

X + - - +  . (4.12) 
S'-- t S r -  u S'-- S O S r 4 + S  O 

We have lost no generality here, in the sense that (4.7) may be trivially recovered 
fiom (4.12) Hence we shall be content to work with the latter equation. 

We may remove G(So, 0) in favour of G(4, 0), which IS related to the scattering 
lengths, by rewriting (4 12) for the special case a = 0, s = 4, t = 0 = t '  The result IS 

; ,4s0> } l 
d S ' A G ( s " O )  s ' -  - - -  . . . .  ' 

G ( s ° ' O ) = G ( 4 ' O ) - ~  4 s '~ 4 s' s O s ' - 4 + s  0 
(4 13) 

which may then be substituted Into (4.12). We have thus an equation for G(s, t), in 

terms of the subtraction constants, G(4, 0), and the discontlnmtIes, AG(s ' ,  t ') ,  
AG(s', 0), and depending upon a parameter s 0. It is important to notice that if AG 
satisfies the Bose symmetry (4.9), then (4.12) defines G as a function with full stu 

crossing symmetry. However, it must be stressed that the representation (4.12) is 
not valid for all values of s, t and u [8]. 

It appears at first sight as if there are three subtraction constants, G0(4, 0), 
Gl(4, 0) and G2(4, 0), but in fact G 2 satisfies an unsubtracted relation, so that 

I f  I 1 + 1  1 (414)  G 2 ( 4 , 0 )  = ds' AG2(s ' ,O)  s' s' 
4 4 

One has therefore just two Independent subtraction constants, as in sect. 2 and these 
may be related to the S-wave scattering lengths as follows 

a 0 = -~ G0(4, 0) + ~ Gl(4, 0) - ~G2(4 ,  0) ,  

a 2 = ~G0(4, 0) - ~Gl(4, 0) + ~G2(4 ,  01 (4 15) 

It is to be remarked that the S- and P-wave contributions to the system (4 12), 
(4.I3), (4.14) and (4 15),just give back the Clnl-Fublnl approximation (2.28) to 
the "Clnl-Fublnl  representation" (4.12). 

We may set up a mapping like those of  sect. 2, in which we first define A in terms 
of the partial-wave absorptlve parts, eq. (2 5). Then AG is defined by means of  the 
imaginary parts of eqs (4.1), which we may re-express, by using crossing symmetry, 
In the form [8] 
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AGo(s, t ) --  ½[A0(s, t)+2A2(s, t)] , 

3 s - 4  [ 1 t - u ]  
Aal(s,  t) - 6 ( s - - 0 - ( s -  u) [2A0(s '  t ) -  5A2(s, t)] + t - u 2(s-- 0(-s u) A l(S, t) 

1 3(3  s - 4 )  A l(s ,  t ) .  AG2(s't)= 2 ( s - t ) ( s - u )  [2AO(s't) 5 A z ( s ' t ) ] + 2 ( t - u ) ( s - t ) ( s  u) 

(4 16) 

It is important  to notice that if  Im fl vanishes for I + l odd, then A satisfies Bose 
symmetry,  i.e. 

Ai(s, t) = ( - 1 ) I A I ( S ,  u), (4 17) 

and so AG(s, t), defined by (4 16), is automatically symmetrical under the Inter- 
change t ~ u. Hence G may be defined by eqs. (4 12) and (4 13), without any am- 
bxguity, and it wtll be fully stu symmetrical,  as we have seen. 

We can calculate F from G by the formulae 

Fo(s, t) = ~ S Go(s, t) + ~ ( 3 s -  4 )Gl ( s ,  t) - ~ ( 3 s  2 + 6 tu - 16)G2(s, t) 

Fl(S, t) = ~( t -  u)[3Gl(S, t ) + ( 3 s - 4 ) G 2 ( s ,  t)] , 

F2(s,t)=ZGo(s,t ) ~(3s-4)Gl(S, t )+ ~(3sZ+6tu 16)G2(s,t ).  ( 4 1 8 )  

The fact that G IS fully symmetrical lmphes that F has the correct stu crossing 
symmetry. We may project out partial waves, using the half-Interval, because Bose 
symmetry ~s automatic. Let us summarize the above equations as the mapping 

1 def 
[l(S) = 8Jim f, / ,  s] = 1 [ i  + (-1)lCtu] f dZsPl(Zs)F(s, t(z s, s)) (4.19) 

o 

It is shown m ref. [8] that this representation Is vahd for any physical s up to 90.20, 
if we take the parameter x 0 = 0. This is therefore a considerable improvement on 
the 60 of  the a-mapping in sect. 2 Indeed, since we could not  actually use the 
c~-mapping, in view of  the threshold problem, we should really compare 90 20 with 
32, the maximum s-value that can be used with the 7-mapping. It xs possible to ex- 
tend the validity of the 8-mapping of (4.19) even further by using also x 0 = 50.41. 
In this case the equahon does not hold for s below 39.78, but it can be used up to 
125.31. It should be remarked at this point  that we cannot regard a and x 0 as indepen- 
dent parameters For a given x 0 and s, we choose to regard a as a function of  t, 
through eq. (4.5). In this way we can cover the requxred integration interval in 
(4.19). 

It is important  to check that the threshold behavlour offl(s), as defined by (4 19), 
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as correct. We may immediately replace (4 19) by 

1 

[l(s ) = 1 f dZsPl(Zs)r(s ' t(zs ' s)), (4 20) 
1 

because t - u crossing is automatic. We substitute the expressions (4 18) into the 
above, and use the MRW equation in the forr~ (4 12). We may now expand 
AG(s', t') in the partlal wave series 

AG(s', t ' )= ~ (2I' +I)AGI,(S')PI,(Z'), (4 21) 
l'=O 

with only even values o f / ' ,  and where z'  was defined m (4.10). We separate the 
Cauchy denominators s' t and s' u from the powers of t and u, so that we have 
to consider the trivial polynomial  terms that contribute only to the S and P waves, 
and then the more comphcated terms, 

l 

l dZ Pl(Zs)Pl,(Z') ,  (4 22a) 

1 2 
s - 4 dZsPl(Zs)Pl,(Z )(z'+-Zs)-I . (4.22b 

We wNte Pl,(Z') explicitly as a polynomial m z' ,  involving only even powers, and 
note that 

4 [ s ' ( s ' - 4 ) -  16Xo]S(S- 4 ) 2 ( 1 - z  2) 
z '2 = 1 + (4 23) 

( s ' -  4) 2 { ( s ' -  s) (I - z 2) (s - 4) 2 - 4s'[s(s - 4) - 16x0] } 

It is not difficult to see, by means of an expansion m powers of (s - 4)(1 ±Zs) , that 
the expressions (4 22a) and (4.22b) give precisely the threshold behavlour ( s -  4) l 
(since z n is orthogonal to Pl(Zs) on the whole interval, l f n  < l). 

We can with advantage use the 8-mapping, combined with umtarl ty,  to define 
a mapping Im f l  ~ Im Jr/'. In this case, it will be necessary to supply a model for 
Imf l (S  ), s >~ 125 31, and some model  for the elasticity, ~71(s), 16 ~<s ~< 125 31, as 
well as values for the scattering lengths One no longer has a crossing-symmetry 
subsidiary constraint upon the input quantities, since F(s, t) is fully crossing sym- 
metric,  but in general one has to exclude unwanted singularities that arise from the 
denominator s' + 4a m (4 10) A necessary constraint is that the fixed point  should 
be independent o f x  0. Hence one could think of  using the mapping at many dif- 
ferent values o f x  0 between 0 and 50 41, and one could then vary the input quanti- 
ties Im f / (s)  (for large s), and r~ l (s), and also the subtraction constants, m such a way 
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as to minimize the x 0 dependence of the fixed point. In a subsequent paper we 
propose to investigate the resulting subsidiary conditions in detail. 

We have pleasure in thanking G. Auberson, J L. Basdevant, K Dmtz, G. Mahoux, 

J L. Petersen and G. Wanders for helpful discussions. 
One of the authors (T.P. Pool) has camed out his work as a scaentific staff mem- 

ber of the Stichtlng F.O.M. (Foundation for Fundamental  Research on Matter), 
which is financially supported by the Z.W.O. (Netherlands Organlsatlon for Pure 

Scientific Research). 

After this work was completed, the paper of Auberson and Khun [12] was 
brought to our notice. In the "note added In proof" at the end of that paper, it was 
shown that the new equations reduce to a Clni Fubinl form if the amphtude is 

completely symmetric. It may be shown in fact that this form as precisely eqmvalent 
to our Cml-Fubanl  representation, for the special case x 0 = (a +})/3a.  Hence the 
Mahoux Roy-Wanders  equation (for the special case x 0 = - ( a  +}) /3a)  is the same 
as the Aube r son -Khun  equation (for the spemal case that the amplitude is stu sym- 
metric). We thank Dr J.S Fredenksen for very helpful discussions of this point. 
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